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WAVES ON THE FREE SURFACE OF A TWO-PHASE MEDIUM

UDC 532.59: 532.547V. A. Barinov and N. N. Butakova

A boundary-value problem is posed to determine the wave motion caused by propagation of a gravity
wave on the free surface of a layer of a two-phase medium. The problem is solved analytically in
the linear approximation. The shape of the free surface, the phase velocity, and the frequency and
damping factor of the wave are determined. An example of the solution of the problem is given.

Investigation of propagation of surface waves over a layer of a two-phase (disperse) liquid is of both theoretical
and practical interest. The results of these investigations can be used to study the influence of admixtures on wave
parameters. This influence on propagation of near-shore waves is described in [1]. At the same time, the study of
the wave motion of a disperse liquid mixture allows one to extend the area of applicability of the theory of surface
waves and also the dynamic theory of two-phase media. Lobov et al. [2] examined standing monochromatic waves
on the interface of liquid layers and a mixture of this liquid with solid particles in the linear approximation and
numerically determined the conditions of stability of this surface.

The objective of the present work is to study the influence of admixtures on wave propagation over the free
surface of a two-phase medium.

1. Physical Model. We consider a layer of a disperse liquid mixture of constant thickness, which is
located on a solid horizontal base. From above, the layer borders upon a medium of negligibly low density, which
is characterized by a constant pressure Patm (in particular, atmospheric). It is assumed that the carrier phase is an
ideal incompressible liquid whose viscosity can be manifested only on the interface; the disperse phase consists of
undeformable particles of identical size. There is no heat and mass transfer through the free surface and between
the phases. The motion of such a two-phase medium is described by two-velocity equations of conservation of mass
and momentum [3]:

∂ρi
∂t

+ div(ρivi) = 0, ρi
dvi
dt

= −αi∇Pi + (−1)iRα1α2(v1 − v2) + ρig,

α1 + α2 = 1, ρi = αiρ
0
i , ρ0

i = const, i = 1, 2.
(1.1)

Here the subscripts i = 1 and 2 refer to quantities that characterize the carrier and disperse phases, respectively, αi,
vi, Pi, ρi, and ρ0

i are the volume concentration, velocity, pressure, and reduced and true densities of the ith phase,
respectively, and g is the acceleration of gravity. The coefficient R(a, η) characterizes the interphase interaction.
For instance, if we take into account only the Stokes force of viscous friction, we have R = æη/a2, where η is the
dynamic viscosity of the liquid, a is the characteristic particle size, and æ is the empirical coefficient of interphase
friction (in the case of spherical particles, æ = 9/2). If several forces of interphase interaction are taken into account,
the coefficient R is equal to the sum of the corresponding coefficients.

We introduce a Cartesian coordinate system where the undisturbed surface coincides with the plane z = 0.
The bottom surface is z = −l (l is the thickness of the layer of the mixture); the z axis and the vector g have the
opposite directions. For system (1.1) to describe the wave motion of the mixture, it should be written for reduced
pressures of the phases: pressure perturbations caused by wave propagation [4]. Assuming that the medium is
at rest in the absence of the wave and using Eqs. (1.1) for vi = 0 and the condition of equal pressures at the
undisturbed surface z = 0, we obtain the hydrostatic components of phase pressures Pi0 = Patm−ρ0

i gz. We assume
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that phase-pressure perturbations caused by wave propagation over the free surface are identical in both phases.
Then, the phase pressures are determined as

Pi = Pi0 + p′ = Patm − ρ0
i gz + p′ (i = 1, 2), (1.2)

where p′ is the pressure perturbation due to the wave. Substituting (1.2) into system (1.1) and taking into account
that ρ0

i is constant, we obtain a system of equations that describe the wave motion of the mixture:
∂αi
∂t

+ div (αivi) = 0,
(1.3)

αiρ
0
i

dvi
dt

= −αi∇p′ + (−1)iRα1α2(v1 − v2), α1 + α2 = 1.

The theory of surface waves for one-phase liquids imposes kinematic and dynamic conditions on the free
surface z = ξ(t, x, y) [4]. These condition follow from the absence of the mass flux through the surface and
continuous momentum flux, respectively. We write these conditions for the case considered. The absence of the
mass flux through the part of the free surface z = αi(t, x, y, ξ)ξ(t, x, y) occupied by the ith phase is written as [3]

αiρ
0
i (vi,n − Vn) = 0 or αi(vi,n − Vn) = 0,

where vi,n is the normal projection of velocity of the ith phase and Vn is the normal velocity of the free surface.
Then, the absence of the mass flux through the surface z = α1ξ+α2ξ = ξ(t, x, y) common for both phases acquires
the form

α1(v1,n − Vn) + α2(v2,n − Vn) = 0
or

α1v1,n + α2v2,n = Vn for z = ξ(t, x, y). (1.4)

Here α1v1,n +α2v2,n is the normal projection of the volume velocity of the mixture. Condition (1.4) is the kinematic
condition for the case considered. The equality of momentum fluxes on the part of the free surface z = αiξ occupied
by the ith phase is αi(ρ0

i vi,n(vi,n − Vn) + Pi − Patm) = 0 [3]. With allowance for the absence of the flow of the
ith phase, this equality is equivalent to αi(Pi − Patm) = 0. Ignoring the normal components of viscous stresses on
interfaces, we obtain the condition α1P1 + α2P2 = Patm for the common surface of the mixture z = α1ξ + α2ξ =
ξ(t, x, y). Substituting relations (1.2) into this equation, we obtain the dynamic condition for the two-phase mixture:

p′ − (α1ρ
0
1 + α2ρ

0
2)gz = 0 for z = ξ(t, x, y). (1.5)

The quantity P = α1P1+α2P2 = Patm+p′−(α1ρ
0
1 + α2ρ

0
2)gz is the pressure in the mixture. Therefore, the dynamic

condition can be formulated as the equality of the pressure in the mixture and the atmospheric pressure on the free
surface: P = Patm. Similar conditions on the interface “liquid–liquid with suspended particles” can be found in [2].
If the constant term ρ0

i is retained in the kinematic conditions, then the condition for the mixture (1.4) is formulated
for the mean-mass velocity of the mixture (ρ1v1 + ρ2v2)/(ρ1 + ρ2). In this case, it follows from the solution of the
wave problem [5] that the mixture performs nondecaying wave motions with the gravity-wave frequency as an ideal
liquid.

Assuming that there is no mass flux of the mixture through the horizontal surface of the solid base, we use
the no-slip condition for each phase at the bottom [3]:

vi,n = 0 (i = 1, 2) for z = −l. (1.6)

The equations in the layer of the mixture (1.3) and the boundary conditions (1.4)–(1.6) form a closed system
for the unknowns vi, αi, p′, and ξ.

2. Boundary-Value Problem for Plane Waves. We consider a plane–parallel wave motion of the liquid
in the plane xz. All the quantities depend only on the variables t, x, and z and vi = (vi,x, 0, vi,z). Let a wave
with a wavelength λ (k = 2π/λ is the wavenumber) propagate over the free surface in the positive direction of the
x axis. The wavelength is much greater than the characteristic size of the disperse-phase particles: λ � a. For
system (1.3) to describe the wave motion of the mixture, we introduce a wave perturbation of concentration of the
disperse phase

α1 = 1− α0 − α′(t, x, z), α2 = α0 + α′(t, x, z). (2.1)

Here α0 and α′ are the concentration of the disperse phase in the quiescent layer of the mixture and its wave
perturbation, respectively. We assume that the disperse phase is uniformly distributed in the undisturbed layer of
the mixture, i.e., α0 = const. Then, to determine the unknown α1 and α2, one has to find α′(t, x, z).
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We introduce the following dimensionless variables and quantities:

t∗ = kct, x∗ = kx, z∗ = kz, ζ = kξ, h = kl,
(2.2)

ui = vi/c, p = p′/(ρ0c2), r = R/(ρ0ck), µi = ρ0
i /ρ

0, γ = α′/α0.

Here ρ0 = (1− α0)ρ0
1 + α0ρ

0
2 is the density of the quiescent mixture and c is the phase velocity of the wave to

be determined (ck = ω is the wave frequency); the asterisk denotes dimensionless quantities (in what follows, the
asterisk is omitted). Substituting relations (2.1) and dimensionless quantities (2.2) into Eqs. (1.3) and boundary
conditions (1.4)–(1.6), we obtain the following boundary-value problem.

The following equations are valid in the region occupied by the mixture:

−∂γ
∂t

+
( 1
α0
− 1− γ

)(∂u1,x

∂x
+
∂u1,z

∂z

)
− u1,x

∂γ

∂x
− u1,z

∂γ

∂z
= 0,

∂γ

∂t
+ (1 + γ)

(∂u2,x

∂x
+
∂u2,z

∂z

)
+ u2,x

∂γ

∂x
+ u2,z

∂γ

∂z
= 0,

µ1

(∂u1,x

∂t
+ u1,x

∂u1,x

∂x
+ u1,z

∂u1,x

∂z

)
+
∂p

∂x
− rα0(1 + γ)(u2,x − u1,x) = 0,

(2.3)
µ1

(∂u1,z

∂t
+ u1,x

∂u1,z

∂x
+ u1,z

∂u1,z

∂z

)
+
∂p

∂z
− rα0(1 + γ)(u2,z − u1,z) = 0,

µ2

(∂u2,x

∂t
+ u2,x

∂u2,x

∂x
+ u2,z

∂u2,x

∂z

)
+
∂p

∂x
+ rα0

( 1
α0
− 1− γ

)
(u2,x − u1,x) = 0,

µ2

(∂u2,z

∂t
+ u2,x

∂u2,z

∂x
+ u2,z

∂u2,z

∂z

)
+
∂p

∂z
+ rα0

( 1
α0
− 1− γ

)
(u2,z − u1,z) = 0.

The following boundary conditions are set on the free surface z = ζ(t, x):
∂ζ

∂t
= α0

( 1
α0
− 1− γ

)
u1,z + α0(1 + γ)u2,z − α0

[( 1
α0
− 1− γ

)
u1,x + (1 + γ)u2,x

]∂ζ
∂x

; (2.4)

p− ν2ζ[1− α0γ(µ1 − µ2)] = 0, ν2 = g/(kc2). (2.5)

The conditions on the bottom z = −h are

ui,z = 0 (i = 1, 2). (2.6)

Equations (2.3) and the boundary conditions (2.4)–(2.6) constitute a nonlinear boundary-value problem for
determining the velocities of the wave motion of the phases, the perturbations of pressure and concentration, and
the shape of the free surface.

We consider the linear variant of problem (2.3)–(2.6). We assume that the amplitude of the surface wave is
small as compared to its length. Then, the boundary conditions on the free surface z = ζ(t, x) can be reduced to
the conditions on the fixed surface z = 0. To this end, we expand all the functions that enter Eqs. (2.4) and (2.5)
into the Maclaurin series in the vicinity of z = 0, for example,

u1,z(t, x, ζ) = u1,z(t, x, 0) +
∂u1,z

∂z

∣∣∣
z=0

ζ +
1
2
∂2u1,z

∂z2

∣∣∣
z=0

ζ2 + . . . .

In addition, it follows from nondimensionalization of (2.2) that the velocities of the wave motion of the
phases and wave perturbations are of the same order as ζ, i.e., they are small.

Taking into account the smallness of unknowns that enter system (2.3)–(2.5), we retain only linear terms
with respect to these unknowns in Eqs. (2.3) and boundary conditions (2.4) and (2.5) expanded into a series in the
vicinity of z = 0. Thus, we obtain the following linear problem:

−α0
∂γ

∂t
+ (1− α0)

(∂u1,x

∂x
+
∂u1,z

∂z

)
= 0,

∂γ

∂t
+
∂u2,x

∂x
+
∂u2,z

∂z
= 0,

µ1
∂u1,x

∂t
+
∂p

∂x
− rα0(u2,x − u1,x) = 0, µ1

∂u1,z

∂t
+
∂p

∂z
− rα0(u2,z − u1,z) = 0, (2.7)

µ2
∂u2,x

∂t
+
∂p

∂x
+ r(1− α0)(u2,x − u1,x) = 0, µ2

∂u2,z

∂t
+
∂p

∂z
+ r(1− α0)(u2,z − u1,z) = 0.
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For z = 0, we have

∂ζ

∂t
= (1− α0)u1,z + α0u2,z; (2.8)

p− ν2ζ = 0. (2.9)

For z = −h, the conditions remain unchanged, i.e., in the form (2.6).
The solution of problem (2.7)–(2.9) has to satisfy some requirements. The relative motion of the phases and

the forces of interphase interaction are responsible for the dissipative process — decay of the wave motion. In the
absence of the disperse phase (α0 = 0) or in the case of identical true densities of the phases (ρ0

1 = ρ0
2), the solution

of the problem should reduce to the known wave solutions for liquids [4]. The components of phase velocities u1,z

and u2,z should satisfy the boundary conditions at the bottom (2.6). In the case of propagation of progressive
waves over the free surface of the layer, the solution of system (2.7) that satisfies the above requirements should be
sought in the following form:

ui,x = (cosh (z + h)/sinh h)(Ai sin (x− t) +Bi cos (x− t)) exp (−bt),

ui,z = (sinh (z + h)/sinh h)(Ci sin (x− t) +Di cos (x− t)) exp (−bt),

p = (cosh (z + h)/sinh h)(K sin (x− t) + L cos (x− t)) exp (−bt),
(2.10)

γ = (cosh (z + h)/sinh h)(M sin (x− t) +N cos (x− t)) exp (−bt).

Here b = β/ω is the dimensionless damping factor of the wave, β is the dimensional damping factor, and the
coefficients Ai, Bi, Ci, Di, K, L, M , and N are constants to be found. Substituting expressions (2.10) into (2.7),
we obtain a system of twelve linear homogeneous equations for determining the unknown coefficients:

−(1− α0)B1 + (1− α0)C1 + bα0M − α0N = 0, (1− α0)A1 + (1− α0)D1 + α0M + bα0N = 0,

−B2 + C2 − bM +N = 0, A2 +D2 −M − bN = 0,

(α0r − bµ1)A1 − α0rA2 + µ1B1 − L = 0, −µ1A1 + (α0r − bµ1)B1 − α0rB2 +K = 0,

(α0r − bµ1)C1 − α0rC2 + µ1D1 +K = 0, −µ1C1 + (α0r − bµ1)D1 − α0rD2 + L = 0,

−(1− α0)rA1 + ((1− α0)r − bµ2)A2 + µ2B2 − L = 0, −µ2A2 − (1− α0)rB1 + ((1− α0)r − bµ2)B2 +K = 0,

−(1− α0)rC1 + ((1− α0)r − bµ2)C2 + µ2D2 +K = 0, −µ2C2 − (1− α0)rD1 + ((1− α0)r − bµ2)D2 + L = 0.

This system is a system of rank 10; hence, two unknown constants are free. The coefficients at K and L do not enter
the matrix forming the rank of the system; therefore, we consider them to be free. We determine the remaining
unknown constants as the solution of the system

Di = −Ai, Bi = Ci, M = 0, N = 0, Ai = miK + niL, Bi = −niK +miL,

m1 =
1

1 + b2

(
1 +

µ1µ
2
2(1− µ1)(1 + b2)

d

)
, m2 =

1
1 + b2

(
1 +

µ2
1µ2(1− µ2)(1 + b2)

d

)
,

(2.11)

n1 =
1

1 + b2

(
−b+

µ2(1− µ1)(r − bµ1µ2)(1 + b2)
d

)
,

n2 =
1

1 + b2

(
−b+

µ1(1− µ2)(r − bµ1µ2)(1 + b2)
d

)
, d = µ2

1µ
2
2 + (r − bµ1µ2)2.

It follows from relations (2.10) and (2.11) that the perturbation of concentration of the disperse phase equals
zero in the linear approximation, and it is a quantity of a higher order of smallness than velocity and pressure
perturbations. Thus, Lobov et al. [2] assumed that the concentration was constant in their formulation of the
problem.

To determine the shape of the free surface, we have to substitute the relations found for ui,z into Eq. (2.8)
and integrate the latter. As a result, we obtain

ζ = [(s1K + s2L) sin (x− t) + (−s2K + s1L) cos (x− t)] exp (−bt)/(1 + b2),

s1 =
1− b2

1 + b2
+

(br + (1 + b2)µ1µ2)(σ − µ1µ2)
d

, s2 = − 2b
1 + b2

+
(r − 2bµ1µ2)(σ − µ1µ2)

d
.

(2.12)
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Hereinafter, σ = (1− α0)µ2 + α0µ1. As for the usual surface waves [4], the free coefficients K and L can be
determined from additional initial data.

Using the solution (2.10)–(2.12), we can easily find the wave perturbations and the shape of the free surface
for a dissipationless motion of the mixture, i.e., for r = 0. In this case, we have b = 0, and relations (2.10) and
(2.12) coincide with the classical ones [4]. Note also that the solution of system (2.7) cannot be found in the form
of monochromatic waves [only with terms sin (x− t) or cos (x− t)], as it was suggested in [2], because in this case
the system of algebraic equations for the coefficients has the trivial solution only.

3. Phase Velocity, Frequency, and Damping Factor of the Wave. We find the dispersion relation
and the equation for the damping factor of the wave. Substituting the expressions for pressure and free surface
perturbations into the dynamic condition (2.9) and equating the coefficients at sin (x− t) and cos (x− t), we obtain

K(1 + b2) coth h = ν2(s1K + s2L), L(1 + b2) coth h = ν2(−s2K + s1L).

The condition of existence of a nontrivial solution of this system for K and L has the form (1 + b2 − s1ν
2 tanh h)2

+ (s2ν
2 tanh h)2 = 0, which is equivalent to the system

s1 = (1 + b2)/(ν2 tanh h), s2 = 0, (3.1)

which allows one to determine the unknown phase velocity and damping factor of the wave. In addition, using the
resultant coefficients (3.1), we can write a refined expression for the shape of the free surface:

ζ = coth h[K sin (x− t) + L cos (x− t)] exp (−bt)/ν2.

To find the phase velocity and damping factor, we have to write the quantities that enter Eqs. (3.1) in a
dimensional form. The equations become too cumbersome. To avoid this, we introduce auxiliary quantities, which
have the dimension of velocity: r1 = cr = R/(ρ0k), b1 = cb = β/k, and ν2

1 = cν2 = g/k. With the use of these
quantities, after simple transformations, system (3.1) becomes

(c+ b1)2(r1 − 2µ1µ2b1) = ν2
1 tanh h, 2b1(µ2

1µ
2
2(c2 + b21) + r1(r1 − 2µ1µ2b1)) = r1(σ − µ1µ2) tanh h.

Solving the resultant system with respect to c and b1, we obtain the following equations for determining the phase
velocity and the damping factor of the wave:

c2 = σν2
1 tanh h/(µ1µ2) + b1(3b1 − 2r1/(µ1µ2)); (3.2)

8µ2
1µ

2
2b

3
1 − 8µ1µ2r1b

2
1 + 2(r2

1 + σµ1µ2ν
2
1 tanh h)b1 − (σ − µ1µ2)r1ν

2
1 tanh h = 0. (3.3)

Equation (3.2) can be written in the form

c2 = c2g + c2d + c2r, (3.2a)

where

c2g = ν2
1 tanh h =

g

k
tanh (kl), c2d =

σ − µ1µ2

µ1µ2
ν2

1 tanh h =
α0(1− α0)(ρ0

1 − ρ0
2)2g tanh (kl)

ρ0
1ρ

0
2k

,

c2r = b1

(
3b1 −

2r1

µ1µ2

)
=

β

k2

(
3β − 2Rρ0

ρ0
1ρ

0
2

)
.

Equation (3.2a) easily yields an expression for the wave frequency ω2 = c2k2. The value of c2g is equal to the squared
phase velocity of the gravity wave [4], c2d > 0 is the increment to the phase velocity due to the presence of the disperse
phase, and c2r is the increment caused by the forces of interphase interaction. The function c2r(b1) acquires negative
values for 0 < b1 < 2r1/(3µ1µ2) and positive values for b1 > 2r1/(3µ1µ2). The value of the damping factor
b1 = 2r1/(3µ1µ2) is critical, since the forces of interphase interaction do not affect wave propagation in this case.
The value of c2r is minimum at b1 = r1/(3µ1µ2): min c2r = −r2

1/(3µ
2
1µ

2
2). In what follows, we introduce the notation

|min c2r| = r2
1/(3µ

2
1µ

2
2) = c2min.

The condition of existence of steady waves is the nonnegative value of the phase velocity squared: c2 > 0. This
condition is equivalent to the nonnegative value of the squared polynomial for b1 in the right side of Eq. (3.2) and,
hence, to the nonnegative value of the discriminant of this polynomial, which is satisfied for σν2

1 tanh h > r2
1/(3µ1µ2).

This condition can be written as a restriction on the wavelength:

3gk tanh (kl)(ρ0
1ρ

0
2 + α0(1− α0)(ρ0

1 − ρ0
2)2)/R2 > 1. (3.4)

Condition (3.4) can be written using new dimensionless variables:

W = (c2g + c2d)/c
2
min > 1. (3.4a)
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Fig. 1 Fig. 2

Fig. 1. Phase velocity of the wave c as a function of the damping factor β for ρ0
2 = 1500 kg/m3 and

α0 = 0.1.

Fig. 2. Damping factor β as a function of the true density of the second phase ρ0
2 for α0 = 0.1 (solid

curve) and 0.05 (dashed curve).

Fig. 3. Wave amplitude δ versus the time t for
α0 = 0.1 and ρ0

2 = 1500 (solid curves) and
500 kg/m3 (dashed curves).

For W = 1, the phase velocity of the wave acquires the minimum value

min c2 = c2g + c2d − c2min = σν2
1 tanh h/(µ1µ2)− r2

1/(3µ
2
1µ

2
2).

Before finding the solution of the cubic equation (3.3), we note that all the coefficients of this equation satisfy
the Hurwitz criterion of stability [6]. We solve Eq. (3.3) using the Cardano formula [7]

b1 = [−χ/2 + (χ2/4 + ψ3/27)1/2]1/3 + [−χ/2− (χ2/4 + ψ3/27)1/2]1/3 + r1/(3µ1µ2), (3.5)

where

ψ = (3σµ1µ2ν
2
1 tanh h− r2

1)/(12µ2
1µ

2
2) = c2min(W − 1)/4 = (1/4) min c2,
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χ = r1[2r2
1 − 9µ1µ2(σ − 3µ1µ2)ν2

1 tanh h]/(216µ3
1µ

3
2) = (3c2min)3/2[1 + 3(3c2g/c

2
min −W )/2]/108.

It is known that the number of roots depends on the sign of the quantity Q = χ2/4 + ψ3/27 [7]. In the
case considered, by virtue of (3.4a), we have Q > 0 for W > 1, and hence, formula (3.5) yields one real and two
complex-conjugate roots. Therefore, the solution of the equation for W > 1 is only one root, which is the real
root (3.5). The quantity Q can be equal to zero only if ψ = 0 and χ = 0 simultaneously, which occurs at W = 1 and
c2g = c2min/9 (or c2d = 8c2min/9). The equality Q = 0 corresponds to the minimum phase velocity and the damping
factor b1 = r1/(3µ1µ2); c2 = min c2 = 0.

We give the final dimensional expressions for the pressure in the mixture and the shape of the free surface:

P = Patm − ρ0gz + ρ0c2cosh (k(z + l))[K sin (k(x− ct)) + L cos (k(x− ct))] exp (−βt)/sinh (kl),

ξ = c2 coth (kl)[K sin (k(x− ct)) + L cos (k(x− ct))] exp (−βt)/g,

Here c2 is determined by formula (3.2).
4. Example of Calculations. To illustrate the obtained solutions (3.2a) and (3.5), we calculated the

wave-motion parameters in a layer of the mixture of thickness l = 100 m, which was caused by propagation of a
wave 1 m long over the free surface. It was assumed that the forces of interphase interaction were represented only
by the Stokes force of viscous friction, i.e., R = 9η/(2a2). For undeformable spheres of radius a = 10−2 m, for
η = 1.004 · 10−3 kg/(m · sec), the empirical coefficient was R = 45 kg/(m3 · sec).

Figure 1 shows the phase velocity as a function of the damping factor of the wave. As is shown above, with
increasing β, the phase velocity first decreases to cmin (in our case, cmin ≈ 1.27099 m/sec), which corresponds to
β = Rρ0/(3ρ0

1ρ
0
2) (in our case, β ≈ 0.01 sec−1) and then increases; the action of interphase friction is not manifested

for β = 2Rρ0/(3ρ0
1ρ

0
2) (in our case, β ≈ 0.02 sec−1).

Figure 2 shows the damping factor as a function of density of admixtures. It follows from Fig. 2 that the
wave decays much more rapidly if the disperse phase is less dense than the carrier medium.

From the resultant expression for the free surface shape, we can derive a formula for the wave amplitude.
For K = L, the amplitude is determined as

δ = max ξ(t, x)−min ξ(t, x) = ξ(t, x0)− ξ(t, x1) = 2
√

2 coth (kl)K exp (−βt)/ν2,

x0 = λ/8 + ct, x1 = 5λ/8 + ct.

Using this expression and Eq. (3.5), we can readily verify that the time of wave decay for admixtures of density
ρ0

2 < ρ0
1 is several times smaller than in the case ρ0

2 > ρ0
1.

Figure 3 shows the decrease in the wave amplitude for K = 1 and α0 = 0.1. The initial values of the
amplitude are 0.1 and 0.2 m. It follows from Fig. 3 that the waves on the free surface of the mixture with particles
less heavy that the carrier liquid decay much more rapidly than waves with heavier particles. Thus, for the case
illustrated in Fig. 3, the decay time differs approximately by a factor of 7.
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